
Petri Net Representation for the Process Specification Language - Part 1: Manufacture
Process Planning

D. Kiritsis, P. Xirouchakis and C. Gunther

CAD/CAM Laboratory (LICP), Department of Mechanical Engineering, Swiss Federal
Institute of Technology at Lausanne (EPFL), CH-1015 Lausanne, Switzerland

Abstract
In this paper we propose Petri nets as a representation technique for modelling and

analysing process planning activities as they are specified in the Process Specification
Language (PSL) project of NIST. The goal of this project is to identify or create a process
specification language (PSL) that can be common to all manufacturing applications, generic
enough to be decoupled from any given application, and robust enough to be able to represent
the necessary process information for any given application. The model discussed in this paper
allows the modeling of tasks, their precedence constraints and the required resources
(machines, setup and tools) and the corresponding costs within a compact Petri net, named
Compact Process Planning net (CPP-net). This model can be easily extended and incorporate
time. This part will be discussed in a next paper.

1. INTRODUCTION

Process planning and production planning for manufacturing processes are still most times
two distinct sequential off-line activities. Process plans are ordered sequences of tasks able to
transform raw material to a final part or product. Tasks are chosen taking into account
available or potential production means. Production planners receive process plans as their
input and their task is to schedule the tasks on the machines while respecting the precedence
relations given in the process plans.

However, decisions made at the process planning stage, e.g., selection of machines,
selection of task sequence, constrain the available choices for optimization on the subsequent
production planning phase. On the other hand, process planning and scheduling may have
conflicting objectives, such as required technology versus resource usage [Chryssolouris and
Chan 1985].

Petri nets have been extensively used for modeling Discrete Event systems and FMS. For a
review of Petri net applications in process planning and a complete list of related references
see the papers of (Cecil et.al., 1992], [Srihari and Emerson, 1990], [Kiritsis and Porchet,
1995] and [Kiritsis and Xirouchakis 1996]. Various aspects related to the use of Petri nets for
the Modeling of manufacturing systems can be found in [Ham and Lu, 1988], [Kruth and
Detand,1992], and [Tönshoff et.al. 1991 and 1993].

In the present paper our attention is concentrated into the process planning problem and a
new structure of a Petri net model for dynamic process planning is proposed. This model is
generic in the sense that its construction is based on a set of standard generic rules and its
graphic representation is similar for any part to be processed. With the proposed method two
tools are used for model analysis and solutions finding: 1) the simulation tool can show

visually, on the net graph, non-desirable conflict situations. Simulation on Petri nets is
performed by firing it from its initial tokening and observing tokens traveling through the net.
2) The reachability analysis tool gives all possible solutions (process plans) dynamically
included in the Petri net.

2. THE PROCESS SPECIFICATION LANGUAGE (PSL) PROJECT

In this section, a brief description of the PSL project is given, focusing the process planning
aspects. Definitions given here have been taken from the official homepage of the PSL project
(http://www.nist.gov/psl/) where the reader may refer for more details, references and official
documents. See also [Schlenoff et.al., 1997].

The goal of the NIST Unified Process Specification Language project is to identify or
create a process specification language (PSL) that can be common to all manufacturing
applications, generic enough to be decoupled from any given application, and robust enough
to be able to represent the necessary process information for any given application.
Additionally, the PSL should be sufficiently well-defined to ensure complete and correct
exchange of process information among established applications. This PSL would facilitate
communication between the various applications because they would all "speak the same
language", either as their "native" language or a "second" language, for exchange.

The PSL Project reached a pivotal point in Spring, 1997 in having to determine the
representation structure for the PSL. Through extensive research and with feedback from
colleagues in industry and academia, a set of requirements for specifying process was defined.
The project then completed an analysis of existing process representations with respect to
these requirements in order to identify constructs and characteristics of these representations
which address the requirements. Based on this analysis, the next step was to identify the
fundamental foundation for a Unified Process Specification Language, likely based on multiple
characteristics and constructs of existing representations.

In this paper we present the CPP-nets as a representation technique of PSL concepts for
process planning.

3. PSL REQUIREMENTS FOR PROCESS PLANNING

Process planning
A process plan specifies what raw material or components are needed to produce a

product, and what processes and tasks are necessary to transform those raw materials into the
final product. Process planning is therefore the task of precisely specifying how to
manufacture a particular product. As such, process planning forms the link between design
and manufacturing.

PSL requirements for process planning
1. abstraction.
2. alternative task
3. associated illustrations and drawings - for explanatory purposes.
4. complex groups of tasks.
5. complex resource characteristics
6. complex sequencing of tasks.
7. complex task representation and characteristics
8. concurrent tasks
9. conditional tasks

10. confidence levels
11. constraints
12. date(s) and time(s) and/or multiple duration(s)
13. iterative loops.
14. manufacturing product quantity.
15. material constraints
16. parallel tasks
17. parameters and variables
18. pre- and post-conditions
19. resource categorization and grouping
20. resource/task combined attributes.
21. serial tasks
22. state existence constraints
23. state representations
24. temporal constraints
25. uncertainty/variability/tolerances

3. PETRI NET REPRESENTATIONS FOR MANUFACTURE PROCESS
PLANNING

In this section we will demonstrate that some of the above requirements of the PSL may be
successfully represented in a special class of Petri nets, the Compact Process Planning nets.

Petri nets
A Petri net consists of places and transitions which are linked to each other by directed

arcs, with some arcs directed from places to transitions (input arcs), and some arcs directed
from transitions to places (output arcs). A Petri net can be described as a bipartite directed
graph whose nodes are a set of places and a set of transitions.

Places represent passive system components which store "tokens" and take particular
states. Graphically, places are represented by circles.

Transitions represent the active system components which may produce, transport or
consume "tokens". For each transition there is a set of input places and a set of output places.
Graphically, transitions are represented by rectangles.

Arcs connect places with transitions and represent the relations between them. The arc’s
direction indicates the flow of information (token flow) through the net: from input places to
transitions or from transitions to output places. Arcs have a weight which indicates the number
of tokens that are transferred from an input place to the connected transition or from a
transition to a connected output place.

A transition is enabled if in each of its input places there is a number of tokens greater or
equal to the weight of the corresponding arc. When enabled, a transition removes a number of
tokens, equal to the weight of the corresponding arc, from each input place and adds a number
of tokens, equal to the weight of the corresponding arc, to each output place.

Marking or state of a Petri net is the position of tokens in the net at any instant in time. A
given marking of a Petri net defines which transitions are able to fire at that time. The firing of
a transition moves the net to a new marking.

A marking µ’ is said to be reachable from a marking µ if there is a sequence of intermediate
markings (and transitions) leading from µ to µ’. The set of all reachable markings from µ is
called reachability set and can be represented by a reachability graph.

Representation 1: Compact Process Planning net
To construct the CPP-net of a process planning problem we first determine the necessary

machining tasks and associated resources. All possible precedence relationships among
machining tasks are recognized and established. This is very important because it confines the
number of possible solutions. For the same reason, groups of tasks to be executed under the
same conditions are established if possible.

The following rules are applied for the construction of the proposed Petri net model for
process planning:

1. Each machining task, or a well established group of them, is represented by a transition Ti,
(i=1,...,n).

2. For each transition Ti there is one input place initially marked with one token. After firing
a transition Ti, the corresponding input place IPi, looses its only token. This indicates
that the transition Ti cannot be fired again and, consequently, the represented task
cannot be considered again.

3. Alternative (candidate) machining tasks, if any, are represented by transitions Tij with
common input and output places.

4. Precedence constraints are modeled with a common place, called constraint place CPim,
between two transitions with a precedence relation. A constraint place CPim is an output
place for the ancestor transition Ti and an input place for the successor transition Tm.

5. There is a common input-output (dynamic) place called ControlPlace, marked initially
with one token, which is connected with bidirected arcs with all transitions. This place
assures that, among the set of all enabled transition at a given time, only one can be
fired. This construction satisfies the requirement that, within a usual manufacturing
environment, only one task can be processed at a time.

6. All arcs are weighted by 1. This assures that only one token (task) will be considered for
processing at each iteration.

A Petri net model constructed according to the above rules:
− represents accurately and dynamically the process planning procedure for a given

mechanical part
− provides a graphic tool for knowledge representation of the type of precedence

relations constraints, represented by the relation: transition-output place-successor
transition

− provides a powerful simulation tool for process planning, simulating both machining
task sequence and state of part and machine tool

− gives all possible solutions/process plans by simulation tracing or reachability analysis

Formal Definition of CPP-net
A Petri net N =[P, T, F, M0] is a CPP-net (Compact Process Planning net) if and only if:
1. P is the set of places of the net. Places represent manufacturing precedence constraints

or alternatives. There are three types of places: one place called ControlPlace; one set
of input places IPi; and one set of constraint places CPim.

2. T is the set of transitions of the net. Transitions represent manufacturing tasks.
3. F is the set of arcs connecting places and transitions.
4. M0 is the initial marking and has one token in the ControlPlace and one token in each

one of the input places IPi.
5. MF is the final marking and has only one token in the ControlPlace and it is the only

dead –end of the net.

6. There is no dead transition at M0.
7. N is a safe Petri net.

A run σ of a CPP-net is a firing sequence of transitions that transforms the initial marking
M0 into the final marking MF.

The runs of a CPP-net represent, in a bijective way, all process plans, i.e. all feasible
sequencing of the tasks of the part to be produced. The reachability graph of a CPP-net
models all runs, i.e. all process plans of a CPP-net. The nodes of the reachability graph
represent all possible states of the workpiece during the manufacturing process and the edges
represent the transitions of the CPP-net, i.e. the machining tasks.

Figure 1. shows graphically the constructing elements and the basic generic structure of the
proposed Petri net model for process planning (CPP-net).

Figure 1. The CPP-net

Data structure of the CPP-net transitions
In order to model the cost of a process plan we have to attach the relevant information to

our model. For process planning purposes, we may distinguish four types of cost: (i) the pure
machining cost, (ii) the cost of moving a part from one machine to another, (iii) the cost of a
setup change in one machine and (iv) the cost of a tool change in one machine. The pure
machining cost depends mainly on the time a machine is used for a particular machining task.
These costs are incorporated into the CPP-net by assigning to every task transition of the
CPP-net the following information:

taskTransition := (task, (machine, (setup, tool))) (1)

Given the above, a state of the CPP-net is characterized by the following formula:

currentState := (tasksState, (currentMachine, (setup[i], tool[i]))) (2)

The tasksState is given by the marking of the CPP-net. It indicates which tasks are already
done and what are the next possible tasks. The currentMachine is the one on which the last
task was performed, while the pairs (setup [i], tool[i]) for each machine i, characterize what is
the current state of the corresponding setup and tool. The enabling of a task is determined by

O1 O21 O3 O4 O5O22

ControlPlace

IP1 IP2 IP3 IP4 IP5

CP14

CP12 CP23
CP45

the tasksState but the cost of that task depends also on the rest of the currentState, more
precisely it is given by the cost of the task, plus a cost for a machine change, plus a cost for a
setup change, plus a cost for a tool change, if these changes take place. If there is no machine,
setup or tool change, the corresponding costs are null.

Grouping of tasks with CPP-nets
The main task is to manufacture the part. It is a complex task which is decomposed into a

set of smaller subtasks considering various methods for accomplishing the task. By applying
this concept, we say that primitive tasks cannot be broken down into any smaller tasks. In tese
terms a machining operation in our case is a primitive task. Each complex task is also a group
of its subtasks and a collection of tasks linked together is called a hierarchical task network or
task network.

A group of tasks can be represented as a sub CPP-net named Group-net. The Group-net
has two special transitions: G-begin and G-end. There is an arc from the control place to the
G-begin transition and from the G-end transition to the control place. Each task transition of
the group (e.g. T2, T3 and T4) has two places, one input and one output place. Each input
place of the task transitions is also output place of the G-begin transition, while each output
place of an task transition is an input place of the G-end transition. A Group-net can be
simplified when there is a precedence constraint between two transitions of a group.(e.g. Fig 2
: between T3 and T4). In that case, we need to have one output place only for the last
constrained transition.

We distinguish two kinds of groups: (i) closed groups which must finish before continuing
with other tasks and (ii) open groups where tasks outside the group are allowed to fire
together (in “competition”) with the tasks of the group.

Closed groups are created when there is a precedence constraint between the group and
other transitions or groups (e.g. in Figure 2a between G-end and T5).

Open groups are created when the planner allows alternative technologies to be considered
for a manufacturing feature. In that case, the control place is connected to the G-begin
transition with a double arc like with any other task transition (e.g. in Figure 2b).

7� 7�7� 7� 7�

*�EHJLQ

*�HQG

(a)

7� 7�7� 7� 7�

*�EHJLQ

*�HQG

(b)
Figure 2. Groups of tasks with CPP-nets: (a) closed group, (b) open group

4. PSL MANUFACTURING SCENARIO 1: EDAPS MICROWAVE T/R
MODULE

A microwave transmit / receive (T/R) module is an electrical component that can be found
in modern telecommunication devices designed for scientific and commercial long-range
defence applications (e.g. radar, satellite communications, long distance television and
telephone signal transmissions). These modules are complex devices having both electrical and
mechanical properties. For more information on the EDAPS scenario, see [Smith, 1997].

Figure 6. A typical microwave T/R module : the MIC substrate, and its housing

Electronic Processes
One method for making the artwork for the MIC (figure 6) is to do the following series of

tasks : precleaning for the artwork, then application of photoresist, then photolithography for
the artwork, then etching. There are several methods for applying photoresist : spindling
photoresist, spraying on the photoresist, painting on the photoresist, and spreading out the
photoresist from a spinner.(figure 7).

Figure 7. Electronic part of the task network for microwave T/R module manufacture

Making the artwork

Applying photoresist EtchingPrecleaning for artwork

(one possible method)

Spinding photoresist Spraying photoresist Spreading photoresist Painting photoresist

Photolithography

(alternative methods)

Mechanical Features
To manufacture a microwave T/R module A, a process plan needs to be generated for the

following design and environment you can see on figure 8. A board, E, of 4.00 inches long,
6.00 inches wide, and 1.00 inch thick will be used. Board E will be made up of two layers,
the ground plane and the dielectric. The ground plane is made up of copper. The dielectric
material is Teflon and has resistivity 0.10. A plated through-hole needs to be made at
(0.25,5.88). The through-hole will be of diameter 0.20 inches, will have a depth of 1.00 inch,
and will have plating of width 0.10 inch. A hole of diameter 0.40 inches and depth of 1.00
inch is needed at (0.50,0.25). There will be two milling features, C and D, at (0.00,2.25) and
(1.20,4.20) respectively. Both of them will not be rotated. Milling feature C will be 0.50
inches deep, 0.40 inches long, and 0.30 inches wide. C will have a corner radius of 0.15.
Milling feature D will be 0.50 inches deep, 0.30 inches long, and 0.40 inches wide. It will
have corner radius 0.08. There is a minimum gap of 10.00 mils in the artwork. There will be
one component, C1, on the artwork. The component is to be placed at (3.60,5.00). C1 is
0.35 inches long, 0.30 inches wide, and 0.20 inches high. It can be simply inserted without any
adhesive. C1 has two pins, each of which at (0.17,0.00) and (0.17,0.30).

Figure 8. Development of mechanical features on the Mixer-IF amplifier substrate

Task description
The process plan is expected to perform under a time constraint of 20 minutes. A

maximum of 10 workers will be provided to accomplish the manufacturing. Finally, one of

each of the following machines will be available throughout the manufacturing. They are
VMC1 (Vertical Machining Centre), EC1 (Electrical Centre), PC1 & PC2 (Platting Centres),
MC1 (Manufacturing Centre), TC1 (Testing Centre), HSC1 (Hermetical Sealing Centre), and
AC1 (Adhesive Centre). A process plan that requires the least amount of time will be most
preferable.
The process planner is restricted to the following performable tasks:

tasks chosen
machine

Steps/alternatives Setup
time

mach.
time

setup : orient table, clamp board, establish datum point : A1.1.1.1 (O1) 2 0
Install drill Ø0.3 and rough drill : A1.1.2.1 (O2)
Finish drill : A1.1.3.1 (O3)

0.1 0.43

Install drill Ø0.2 and rough drill 4 times :A1.1.3.1 (O4..O7)

i. Drill plated through-holes VMC1

Finish drill 4 times : A1.1.4.1 (O8..O11)
0.1 0.77

condition board : A2.1.1.1 (O12) 0 10
Pickle board : A2.1.2.1 (O13) 0 10
Activate board : A2.1.3.1 (O14) 0 10

ii. Plate through-holes PC1

Electroless copper deposition : A2.1.4.1 (O15) 0 15
Apply platting resist : A3.1.1.1 (O16) 30 0.5
Copper electroplating : A3.1.2.1 (O17) 0 25
Tin/Lead electroplating : A3.1.3.1 (O18) 0 15

iii. Platting resist PC2

Strip plating resist : A3.1.4.1 (O19) 0 5
iv. Pre-clean the board EC1 A4.1.1.1 (20) 0 32.29

30 0.4
30 0.45
30 0.45

v. Application of phtoresist EC1 spindle photoresist : A5.1.1.1 (O21) ¦
Spray photoresist : A5.1.1.2 (O22) ¦ alternatives (Alt1)
Spread photoresist : A5.1.1.3 (O23) ¦
Paint photoresist : A5.1.1.4 (O24) ¦ 30 0.65

vi. Photolithography of photoresist EC1 A6.1.1.1 (O25) 30 2.2
vii. Etching EC1 A7.1.1.1 (O26) 30 28

setup (orient board, clamp board, establish datum point) : A8.1.1.1
(O27)

2 0

Install side-milling toll, Rough side-mill pocket 1 : A8.1.2.1 (O28)
Finish side-mill pocket 1 : A8.1.3.1 (O29)
Rough side-mill pocket 2 : A8.1.4.1 (O30)
Finish side-mill pocket 2 : A8.1.5.1 (O31)

0.1 0.34

Install end-milling tool, rough end-mill pocket 1 : A8.1.6.1 (O32)
Rough end-mill pocket 2 : A8.1.7.1 (O33)

0.1 1.54

Install slot-milling tool, rough slot mill pocket 1 : A8.1.8.1 (O34) 0.1 1.24
Install drill Ø0.4, rough drill hole : A8.1.9.1 (O35)
Rough drill hole : A8.1.10.1 (O36)
Rough drill hole : A8.1.11.1 (O37)
Rough drill hole : A8.1.12.1 (O38)

0.1 1.54

Install drill Ø0.15, rough drill hole : A8.1.13.1 (O39)
Finish drill hole : A8.1.14.1 (O40)
Rough drill hole : A8.1.15.1 (O41)

viii. Make slots, pockets, and holes VMC1

Finish drill hole : A8.1.16.1 (O42)

0.1 0.22

ix. Pre-clean before soldering MC1 A9.1.1.1 (O43) 30 5.71
x. Screenprint solder stop to board MC1 A10.1.1.1 (O44) 30 0.29
xi. Apply solder paste to board MC1 30 times (group) : A11.1.1-30.1 (O45-O74) 30 7.5
xii. Dry solder paste MC1 A12.1.1.1 (O75) 0 5.71
xiii. Manual pin transfer of adhesive
to board

AC1 L1, L2 & FET(group) : A13.1.1-3.1 (O76-O78) 30 0

xiv. Heat curing of adhesive AC1 A14.1.1.1 (O79) 30 10
xv. Pick and place MC1 15 times (group) : A15.1.1-15.1 (O80-O95) 0 7.5
xvi. eflow soldering MC1 A16.1.1.1 (O96) 30 5
xvii. Hand soldering MC1 L1, L2 & FET (group) : A17.1.1-3.1 (O97-O99) 0 7
xviii. Flux cleaning MC1 A18.1.1.1 (O100) 0 11.43
xix. Pre-cap testing TC1 A19.1.1.1 (O101) 0 35
xx. Shielding/hermetically sealing HSC1 A20.1.1.1 (O102) 0 1.86
xxi. Post-cap testing TC1 A21.1.1.1 (O103) 0 35
xxii. Final inspection TC1 A22.1.1.1 (O104) 0 29.67

Figure 9 : Description of the EDAPS tasks

For each task, the planner choose the technology alternatives, before describing the
necessary steps. Then, he chooses the available machines and defines the setups and the tools.
He can allow several alternatives. As described before:
− Tasks represent things you want to accomplish. Therefore, a task is usually a geometry to

make ; it can also be a group of geometric entities to make, an auxiliary task (i.e.
cleaning), etc.

− A technological alternative is an alternative of technological possibilities for a task; a
group is automatically created for each technology. On this example, technological
alternatives are not defined

− For a chosen technology, there is a list of steps needed to realise the task at the defined
level of quality

− An alternative is a choice among possible alternative solutions for a primitive task.

The EDAPS scenario proposes a list of tasks (figure. 9) to manufacture a microwave T/R
module A. At these stage, no alternative of processes are defined between the chosen tasks. A
list of precedence constraints is set from task (i) to task (xxiii). However, there’s an alternative
for the application of photoresist (v) with four alternatives (O21, O22, O23 &O24). Some
groups are already created when the manufacturing times are calculated for a group of tasks in
(i), (viii), (ix) (xii), (xiv), (xvi) & (xviii), and the process is defined as groups of tasks on the
same machine. Because of that, the optimal processes are already given, in some way.

Grouping the described steps :
Groups are created when there’s no precedence constraints between several tasks, or when

we have a precedence constraint between a component and several other ones (figure 10).

Name Components Description
(i) G1 O15-O18 geometrical tasks (side-milling vs same tool/setup/machine)
(ii) G2 O19-O20 geometrical tasks (end-milling vs same tool/setup/machine)
(iii) G3 O22-O25 geometrical tasks (drilling vs same tool/setup/machine)
(iv) G4 O26-O29 geometrical tasks (drilling vs same tool/setup/machine)
(v) G5 O32-O61 same tasks vs different positions
(vi) G6 O63-O65 same tasks vs different positions
(vii) G7 O67-O82 same tasks vs different positions
(viii) G8 O84-O86 same tasks vs different positions
(ix) G9 O4-O7 same tasks vs different positions
(x) G10 O8-O11 same tasks vs different positions
(xi) G11 G9, G10 same machine
(xii) G12 O12-O15 generic task
(xiii) G13 O16-O19 generic task
(xiv) G14 G1, G2, G3, G4, O34 same machine

Fig. 10 : List of the chosen groups of the EDAPS scenario

In the EDAPS scenario, primitive tasks are grouped either by manufacturing tools (i), (ii),
(iii) & (iv), when several tasks can be grouped in a complex task, (xii) & (xiii) or when there
are similar tasks to achieve at different positions (v), (vi), (vii), (viii), (ix) & (x). Two groups
are created when several groups depend on the same machine (xi) & (xiv).

Constraints :
We distinguish two kinds of constraints : the first ones are evident because the planner

choose steps to make a task, the second ones are explicitly given by the planner.
The elementary constraints are set between two alternatives or groups. We can drawn a list of
the whole precedence constraints (figure 11):

Precedence constraint Description
(i) O1 �2���*���*��� setup before machining (VMC1)
(ii) O2 2� rough drill before finish drill (VMC1)
(iii) G9 *�� rough drill before finish drill (VMC1)
(iv) G11 *�� *�� 2�� task constraint
(v) O20 $OW���2����2��� constraint between a task and an alternative of tasks
(vi) Alt1 (O21..O24) �2�� constraint between an alternative of tasks and a task
(vii) O25 2�� 2�� *�� 2�� task constraint
(viii) O43 2�� *� 2�� *� task constraint
(ix) G6 2�� *� 2�� *� task constraint
(x) G8 2��� 2��� 2��� task constraint
(xi) O102 2��� 2��� task constraint
(xii) O28 2����2�� 2�� rough side-mill pocket before finish side-mill pocket
(xiii) O39 2����2�� 2�� rough drill before finish drill
(xiv) G1 *��� side-mill pocket before end-mill pocket
(xv) G2 2�� end-mill pocket before slot-mill tool
(xvi) O34 �*� slot-mill tool before drill holes
(xvii) G3 *� drill hole diam 0.4 before drill hole diam 0.15

Fig. 11 : The list of the precedence constraints between the tasks of the EDAPS scenario

In the EDAPS scenario the tasks are subdivided in steps : setup and installing tools are
made before machining (i), roughing is always made before finishing (ii), (iii), (xii) & (xiii).
There is a list of constraints between every task (iv), (v), (vi), (vii), (viii), (ix), (x) & (xi).
These constraints can be discussed and may be modified. We also can set different constraints
between the tasks made on VMC1 (xiv), (xv), (xvi) & (xvii). Finally, there is an alternative of
task for the application of photoresist (v) & (vi).

5. CPP-NET REPRESENTATION OF THE EDAPS SCENARIO

The CPP-net representation of the EDAPS scenario provide the basis for representing this
simple processes. The information of time, resource and activity is included behind all the
task/transition (e.g. O1..O104). Moreover, the CPP-net representation allows the description
of :

(i) temporal/precedence constraints between the tasks. It is possible with the notion
of input/output place and the precedence of tokens needed to fire the
tasks/transitions

(ii) resource grouping (e.g. G1..G14)
(iii) alternative tasks (e.g. O21..O24)
(iv) alternative technologies (not used in the EDAPS scenario)

�� ���� ������������������������ ��� ����������������������
���

*� *�

*�

*�

*�

������

�� ������������������������������ �� ���� ���
���

*�

*� *�*�

*�

����

*�

*�

*��

*�

*�

*��

*��

*��

*��

*�

*��

*� *�

*�

���

*��

*��

*��

�� �� � �

*��

���

Fig. 12 : CPP-net representation of the EDAPS scenario : exploded view

The token in the control place represent the part. The token can move and fire all the
task/transition which don’t have any input place. In the EDAPS scenario the only one is the
transition G11.

In the higher level grouped tasks can be represented by a simple transition. (e.g. G12)The
graph at figure 12 is an exploded graph at the lower levels. The hierarchical network of the
CPP representation is described in figures 13 and 14, the last one is the higher level.

Parallel tasks are grouped into the same task/transition; the graph you can see represent the
serial tasks. We decided that only one transition/task can be fire at the same time.

Each task/transition can fire only once : they all have an input place with one token.

The notion of alternative processes is given when the token of the control place (the part)
can fire different task/transitions. In the EDAPS scenario, as the global process (complex tasks
are ordered) is given, this case doesn’t appear very often.

����������
��� ����*� *� *�*�*�� ����*��

*��

*��

������������� ���� *���� *� *� *����*�*�� �

*��

*��

Fig. 13 : CPP-net representation of the EDAPS scenario : 2nd level view

���������� ���
���� �� �� ��*��

��������� *�*�������*�� �� *� �� ��*�

Fig. 14 : CPP-net representation of the EDAPS scenario : high level view

6. CONCLUSIONS

In this paper we propose Petri nets as a representation technique for modelling and
analysing process planning activities as they are specified in the Process Specification
Language (PSL) project of NIST. The goal of this project is to identify or create a process
specification language (PSL) that can be common to all manufacturing applications, generic
enough to be decoupled from any given application, and robust enough to be able to represent
the necessary process information for any given application. The model discussed in this paper

allows the modelling of tasks, their precedence constraints and the required resources
(machines, setup and tools) and the corresponding costs within a compact Petri net, named
Compact Process Planning net (CPP-net). On the proposed example, our methodology of
process representation can seem heavy. In reality, it allows essentially to envisage technologies
and production alternatives. So, it lets more flexibility later to the scheduling service to plan
the workshop. It allows the technological and specific group establishing defined by the
Bureau of Methods. Precedence Constraints are introduced, either automatically referring
some to successive steps, or manually by the Manufacturing Manager. Finally the obtained
graph represents the totality of solutions of process planning a product.

7. REFERENCES

CECIL, J.A., SRIHARI, K., EMERSON, C.R., 1992, A review of Petri Net Applications in
Process Planning, The International Journal of Advanced Manufacturing Technology,
7:168-177.

CHRYSSOLOURIS, G. and CHAN, S., 1985, An integrated approach to process planning
and scheduling, Annals of the CIRP, Vol. 34(1), pp. 413-415.

HAM, I., LU, S. C.-U., 1988, Computer-Aided Process Planning: The Present and the Future,
CIRP Annals, 37/2:591-601.

KIRITSIS, D. and PORCHET, M., 1996, A generic Petri net model for dynamic process
planning and sequence optimisation, Advances in Engineering Software, Vol. 25, No. 1,
pp. 61-71.

KIRITSIS, D., XIROUCHAKIS, P., 1996, A Software Prototype for Cost Estimation of
Process Plans of Machined Parts, ISATA’96/Mechatronics, Florence, 19:26.

KRUTH, J.P., DETAND, J., 1992, A CAPP System for Nonlinear Process Plans, Annals of
the CIRP, 41/1:489-492.

SCHLENOFF, C., KNUTILLA, A., RAY, S., 1997, Requirements for Modeling
Manufacturing Process: A New Perspective, Proceedings of the DETC’97: 1997 ASME
Design Engineering Technical Conferences, September 14-17, 1997, Sacramento,
California.

SMITH, S.J.J., 1997, Task-Network Planning using Total-Order Forward Search and
Applications to Bridge and to Microwave Module Manufacture, Ph.D. Thesis, UMD.

SRIHARI, K., EMERSON, C.R., 1990, Petri Nets in Dynamic Process Planning, Computers
Industrial Engineering, 9:447-451.

TÖNSHOFF, H. K., BECKENDORFF, U., ANDERS, N. and DETAND, J., 1991, A Process
Description Concept for Process Planning, Scheduling and Job Shop Control, Proceedings
of the CIRP Seminar, Manufacturing Systems, Vol. 20, No. 1, pp. 53-60.

TÖNSHOFF, H. K., KREUTZFELD, J. and HOFSCHNEIDER, D., 1993, Concurrent
process planning and workshop control in batch production-load oriented process planning,
Proceedings of the CIRP Seminars, Manufacturing Systems, Vol. 22, No. 3, pp. 231-241.

